-
redis性能为什么高?
Redis到底有多快
可以达到100000+的QPS(每秒内查询次数)。
横轴是连接数,纵轴是QPS。
Redis为什么这么快
1、完全基于内存,绝大部分请求是纯粹的内存操作,非常快速。数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1);
2、数据结构简单,对数据操作也简单,Redis中的数据结构是专门进行设计的;
3、采用单线程,避免了不必要的上下文切换和竞争条件,也不存在多进程或者多线程导致的切换而消耗 CPU,不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗;
4、使用多路I/O复用模型,非阻塞IO;
5、使用底层模型不同,它们之间底层实现方式以及与客户端之间通信的应用协议不一样,Redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求;
以上几点都比较好理解,下边我们针对多路 I/O 复用模型进行简单的探讨:
多路 I/O 复用模型
多路I/O复用模型是利用 select、poll、epoll 可以同时监察多个流的 I/O 事件的能力,在空闲的时候,会把当前线程阻塞掉,当有一个或多个流有 I/O 事件时,就从阻塞态中唤醒,于是程序就会轮询一遍所有的流(epoll 是只轮询那些真正发出了事件的流),并且只依次顺序的处理就绪的流,这种做法就避免了大量的无用操作。
下面举一个例子,模拟一个tcp服务器处理30个客户socket。 假设你是一个老师,让30个学生解答一道题目,然后检查学生做的是否正确,你有下面几个选择:
-
第一种选择:按顺序逐个检查,先检查A,然后是B,之后是C、D。。。这中间如果有一个学生卡主,全班都会被耽误。
这种模式就好比,你用循环挨个处理socket,根本不具有并发能力。
- 第二种选择:你创建30个分身,每个分身检查一个学生的答案是否正确。 这种类似于为每一个用户创建一个进程或者线程处理连接。
-
第三种选择,你站在讲台上等,谁解答完谁举手。这时C、D举手,表示他们解答问题完毕,你下去依次检查C、D的答案,然后继续回到讲台上等。此时E、A又举手,然后去处理E和A。。。
这种就是IO复用模型,Linux下的select、poll和epoll就是干这个的。将用户socket对应的fd注册进epoll,然后epoll帮你监听哪些socket上有消息到达,这样就避免了大量的无用操作。此时的socket应该采用非阻塞模式。
这样,整个过程只在调用select、poll、epoll这些调用的时候才会阻塞,收发客户消息是不会阻塞的,整个进程或者线程就被充分利用起来,这就是事件驱动,所谓的reactor模式。
这里“多路”指的是多个网络连接,“复用”指的是复用同一个线程。 采用多路 I/O 复用技术可以让单个线程高效的处理多个连接请求(尽量减少网络 IO 的时间消耗),且 Redis 在内存中操作数据的速度非常快,也就是说内存内的操作不会成为影响Redis性能的瓶颈,主要由以上几点造就了 Redis 具有很高的吞吐量。
-
-
单线程的redis如何利用多核cpu机器?
我们首先要明白,上边的种种分析,都是为了营造一个Redis很快的氛围!官方FAQ表示,因为Redis是基于内存的操作,CPU不是Redis的瓶颈,Redis的瓶颈最有可能是机器内存的大小或者网络带宽。既然单线程容易实现,而且CPU不会成为瓶颈,那就顺理成章地采用单线程的方案了(毕竟采用多线程会有很多麻烦!)。
但是,我们使用单线程的方式是无法发挥多核CPU 性能,不过我们可以通过在单机开多个Redis 实例来完善!
-
redis的缓存淘汰策略?
redis 提供 6种数据淘汰策略:
- volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
- volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
- volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
- allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
- allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
- no-enviction(驱逐):禁止驱逐数据
上面提到的LRU(Least Recently Used)策略,实际上Redis实现的LRU并不是可靠的LRU,也就是名义上我们使用LRU算法淘汰键,但是实际上被淘汰的键并不一定是真正的最久没用的, 这里涉及到一个权衡的问题,如果需要在全部键空间内搜索最优解,则必然会增加系统的开销,Redis是单线程的, 也就是同一个实例在每一个时刻只能服务于一个客户端,所以耗时的操作一定要谨慎 。为了在一定成本内实现相对的LRU, 早期的Redis版本是基于采样的LRU,也就是放弃全部键空间内搜索解改为采样空间搜索最优解。自从Redis3.0版本之后, Redis作者对于基于采样的LRU进行了一些优化,目的是在一定的成本内让结果更靠近真实的LRU。
策略规则
如果数据呈现幂律分布,也就是一部分数据访问频率高,一部分数据访问频率低,则使用allkeys-lru
如果数据呈现平等分布,也就是所有的数据访问频率都相同,则使用allkeys-random
volatile-lru策略和volatile-random策略适合我们将一个Redis实例既应用于缓存和又应用于持久化存储的时候,然而我们也可以通过使用两个Redis实例来达到相同的效果,将key设置过期时间实际上会消耗更多的内存,因此我们建议使用allkeys-lru策略从而更有效率的使用内存
失效的内部实现
消极方法(passive way),在主键被访问时如果发现它已经失效,那么就删除它
积极方法(active way),周期性地从设置了失效时间的主键中选择一部分失效的主键删除
主动删除:当前已用内存超过maxmemory限定时,触发主动清理策略,该策略由启动参数的配置决定
-
redis如何持久化数据?
redis 持久化机制(怎么保证 redis 挂掉之后再重启数据可以进行恢复)
很多时候我们需要持久化数据也就是将内存中的数据写入到硬盘里面,大部分原因是为了之后重用数据(比如重启机器、机器故障之后恢复数据),或者是为了防止系统故障而将数据备份到一个远程位置。
Redis不同于Memcached的很重一点就是,Redis支持持久化,而且支持两种不同的持久化操作。Redis的一种持久化方式叫快照(snapshotting,RDB),另一种方式是只追加文件(append-only file,AOF)。 这两种方法各有千秋,下面我会详细这两种持久化方法是什么,怎么用,如何选择适合自己的持久化方法。
快照(snapshotting)持久化(RDB)
Redis可以通过创建快照来获得存储在内存里面的数据在某个时间点上的副本。Redis创建快照之后,可以对快照进行备份,可以将快照复制到其他服务器从而创建具有相同数据的服务器副本(Redis主从结构,主要用来提高Redis性能),还可以将快照留在原地以便重启服务器的时候使用。
快照持久化是Redis默认采用的持久化方式,在redis.conf配置文件中默认有此下配置:
1 2 3 4 5
save 900 1 #在900秒(15分钟)之后,如果至少有1个key发生变化,Redis就会自动触发BGSAVE命令创建快照。 save 300 10 #在300秒(5分钟)之后,如果至少有10个key发生变化,Redis就会自动触发BGSAVE命令创建快照。 save 60 10000 #在60秒(1分钟)之后,如果至少有10000个key发生变化,Redis就会自动触发BGSAVE命令创建快照。
AOF(append-only file)持久化
与快照持久化相比,AOF持久化 的实时性更好,因此已成为主流的持久化方案。默认情况下Redis没有开启AOF(append only file)方式的持久化,可以通过appendonly参数开启:
1
appendonly yes
开启AOF持久化后每执行一条会更改Redis中的数据的命令,Redis就会将该命令写入硬盘中的AOF文件。AOF文件的保存位置和RDB文件的位置相同,都是通过dir参数设置的,默认的文件名是appendonly.aof。
在Redis的配置文件中存在三种不同的 AOF 持久化方式,它们分别是:
1 2 3
appendfsync always #每次有数据修改发生时都会写入AOF文件,这样会严重降低Redis的速度 appendfsync everysec #每秒钟同步一次,显示地将多个写命令同步到硬盘 appendfsync no #让操作系统决定何时进行同步
为了兼顾数据和写入性能,用户可以考虑 appendfsync everysec选项 ,让Redis每秒同步一次AOF文件,Redis性能几乎没受到任何影响。而且这样即使出现系统崩溃,用户最多只会丢失一秒之内产生的数据。当硬盘忙于执行写入操作的时候,Redis还会优雅的放慢自己的速度以便适应硬盘的最大写入速度。
Redis 4.0 对于持久化机制的优化
Redis 4.0 开始支持 RDB 和 AOF 的混合持久化(默认关闭,可以通过配置项 aof-use-rdb-preamble 开启)。
如果把混合持久化打开,AOF 重写的时候就直接把 RDB 的内容写到 AOF 文件开头。这样做的好处是可以结合 RDB 和 AOF 的优点, 快速加载同时避免丢失过多的数据。当然缺点也是有的, AOF 里面的 RDB 部分是压缩格式不再是 AOF 格式,可读性较差。
补充内容:AOF 重写
AOF重写可以产生一个新的AOF文件,这个新的AOF文件和原有的AOF文件所保存的数据库状态一样,但体积更小。
AOF重写是一个有歧义的名字,该功能是通过读取数据库中的键值对来实现的,程序无须对现有AOF文件进行任何读入、分析或者写入操作。
在执行 BGREWRITEAOF 命令时,Redis 服务器会维护一个 AOF 重写缓冲区,该缓冲区会在子进程创建新AOF文件期间,记录服务器执行的所有写命令。当子进程完成创建新AOF文件的工作之后,服务器会将重写缓冲区中的所有内容追加到新AOF文件的末尾,使得新旧两个AOF文件所保存的数据库状态一致。最后,服务器用新的AOF文件替换旧的AOF文件,以此来完成AOF文件重写操作。
-
redis有哪几种数据结构?
redis 常见数据结构以及使用场景分析
1.String
常用命令: set,get,decr,incr,mget 等。
String数据结构是简单的key-value类型,value其实不仅可以是String,也可以是数字。 常规key-value缓存应用; 常规计数:微博数,粉丝数等。
介绍 :string 数据结构是简单的 key-value 类型。虽然 Redis 是用 C 语言写的,但是 Redis 并没有使用 C 的字符串表示,而是自己构建了一种 简单动态字符串(simple dynamic string,SDS)。相比于 C 的原生字符串,Redis 的 SDS 不光可以保存文本数据还可以保存二进制数据,并且获取字符串长度复杂度为 O(1)(C 字符串为 O(N)),除此之外,Redis 的 SDS API 是安全的,不会造成缓冲区溢出。
常用命令: set,get,strlen,exists,dect,incr,setex 等等。
应用场景 :一般常用在需要计数的场景,比如用户的访问次数、热点文章的点赞转发数量等等。
2.Hash
常用命令: hget,hset,hgetall 等。
hash 是一个 string 类型的 field 和 value 的映射表,hash 特别适合用于存储对象,后续操作的时候,你可以直接仅仅修改这个对象中的某个字段的值。 比如我们可以 hash 数据结构来存储用户信息,商品信息等等。比如下面我就用 hash 类型存放了我本人的一些信息:
1 2 3 4 5 6 7
key=JavaUser293847 value={ “id”: 1, “name”: “SnailClimb”, “age”: 22, “location”: “Wuhan, Hubei” }
介绍 :hash 类似于 JDK1.8 前的 HashMap,内部实现也差不多(数组 + 链表)。不过,Redis 的 hash 做了更多优化。另外,hash 是一个 string 类型的 field 和 value 的映射表,特别适合用于存储对象,后续操作的时候,你可以直接仅仅修改这个对象中的某个字段的值。 比如我们可以 hash 数据结构来存储用户信息,商品信息等等。
常用命令: hset,hmset,hexists,hget,hgetall,hkeys,hvals 等。
应用场景: 系统中对象数据的存储。
3.List
常用命令: lpush,rpush,lpop,rpop,lrange等
list 就是链表,Redis list 的应用场景非常多,也是Redis最重要的数据结构之一,比如微博的关注列表,粉丝列表,消息列表等功能都可以用Redis的 list 结构来实现。
Redis list 的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销。
另外可以通过 lrange 命令,就是从某个元素开始读取多少个元素,可以基于 list 实现分页查询,这个很棒的一个功能,基于 redis 实现简单的高性能分页,可以做类似微博那种下拉不断分页的东西(一页一页的往下走),性能高。
介绍 :list 即是 链表。链表是一种非常常见的数据结构,特点是易于数据元素的插入和删除并且且可以灵活调整链表长度,但是链表的随机访问困难。许多高级编程语言都内置了链表的实现比如 Java 中的 LinkedList,但是 C 语言并没有实现链表,所以 Redis 实现了自己的链表数据结构。Redis 的 list 的实现为一个 双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销。
常用命令: rpush,lpop,lpush,rpop,lrange、llen 等。
应用场景: 发布与订阅或者说消息队列、慢查询。
4.Set
常用命令: sadd,spop,smembers,sunion 等
set 对外提供的功能与list类似是一个列表的功能,特殊之处在于 set 是可以自动排重的。
当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的。可以基于 set 轻易实现交集、并集、差集的操作。
比如:在微博应用中,可以将一个用户所有的关注人存在一个集合中,将其所有粉丝存在一个集合。Redis可以非常方便的实现如共同关注、共同粉丝、共同喜好等功能。这个过程也就是求交集的过程,具体命令如下:
1
sinterstore key1 key2 key3 将交集存在key1内
介绍 : set 类似于 Java 中的 HashSet 。Redis 中的 set 类型是一种无序集合,集合中的元素没有先后顺序。当你需要存储一个列表数据,又不希望出现重复数据时,set 是一个很好的选择,并且 set 提供了判断某个成员是否在一个 set 集合内的重要接口,这个也是 list 所不能提供的。可以基于 set 轻易实现交集、并集、差集的操作。比如:你可以将一个用户所有的关注人存在一个集合中,将其所有粉丝存在一个集合。Redis 可以非常方便的实现如共同关注、共同粉丝、共同喜好等功能。这个过程也就是求交集的过程。
常用命令: sadd,spop,smembers,sismember,scard,sinterstore,sunion 等。
应用场景: 需要存放的数据不能重复以及需要获取多个数据源交集和并集等场景
5.Sorted Set
常用命令: zadd,zrange,zrem,zcard等
和set相比,sorted set增加了一个权重参数score,使得集合中的元素能够按score进行有序排列。
举例: 在直播系统中,实时排行信息包含直播间在线用户列表,各种礼物排行榜,弹幕消息(可以理解为按消息维度的消息排行榜)等信息,适合使用 Redis 中的 Sorted Set 结构进行存储。
介绍: 和 set 相比,sorted set 增加了一个权重参数 score,使得集合中的元素能够按 score 进行有序排列,还可以通过 score 的范围来获取元素的列表。有点像是 Java 中 HashMap 和 TreeSet 的结合体。
常用命令: zadd,zcard,zscore,zrange,zrevrange,zrem 等。
应用场景: 需要对数据根据某个权重进行排序的场景。比如在直播系统中,实时排行信息包含直播间在线用户列表,各种礼物排行榜,弹幕消息(可以理解为按消息维度的消息排行榜)等信息。
-
redis集群有哪几种形式?
现在越来越多的项目都会利用到redis,多实例redis服务比单实例要复杂的多,这里面涉及到定位、容错、扩容等技术问题。我们常用sharding技术来对此进行管理,其集群模式主要有以下几种方式:
- 主从复制
- 哨兵模式
- Redis官方 Cluster集群模式(服务端sharding)
- Jedis sharding集群(客户端sharding)
- 利用中间件代理
-
主从复制(Master-Slave Replication)
实现主从复制(Master-Slave Replication)的工作原理:Slave从节点服务启动并连接到Master之后,它将主动发送一个SYNC命令。Master服务主节点收到同步命令后将启动后台存盘进程,同时收集所有接收到的用于修改数据集的命令,在后台进程执行完毕后,Master将传送整个数据库文件到Slave,以完成一次完全同步。而Slave从节点服务在接收到数据库文件数据之后将其存盘并加载到内存中。此后,Master主节点继续将所有已经收集到的修改命令,和新的修改命令依次传送给Slaves,Slave将在本次执行这些数据修改命令,从而达到最终的数据同步。
如果Master和Slave之间的链接出现断连现象,Slave可以自动重连Master,但是在连接成功之后,一次完全同步将被自动执行。
主从模式的优缺点
优点:
- 同一个Master可以同步多个Slaves。
- Slave同样可以接受其它Slaves的连接和同步请求,这样可以有效的分载Master的同步压力。因此我们可以将Redis的Replication架构视为图结构。
- Master Server是以非阻塞的方式为Slaves提供服务。所以在Master-Slave同步期间,客户端仍然可以提交查询或修改请求。
- Slave Server同样是以非阻塞的方式完成数据同步。在同步期间,如果有客户端提交查询请求,Redis则返回同步之前的数据
- 为了分载Master的读操作压力,Slave服务器可以为客户端提供只读操作的服务,写服务仍然必须由Master来完成。即便如此,系统的伸缩性还是得到了很大的提高。
- Master可以将数据保存操作交给Slaves完成,从而避免了在Master中要有独立的进程来完成此操作。
- 支持主从复制,主机会自动将数据同步到从机,可以进行读写分离。
缺点:
- Redis不具备自动容错和恢复功能,主机从机的宕机都会导致前端部分读写请求失败,需要等待机器重启或者手动切换前端的IP才能恢复。
- 主机宕机,宕机前有部分数据未能及时同步到从机,切换IP后还会引入数据不一致的问题,降低了系统的可用性。
- Redis的主从复制采用全量复制,复制过程中主机会fork出一个子进程对内存做一份快照,并将子进程的内存快照保存为文件发送给从机,这一过程需要确保主机有足够多的空余内存。若快照文件较大,对集群的服务能力会产生较大的影响,而且复制过程是在从机新加入集群或者从机和主机网络断开重连时都会进行,也就是网络波动都会造成主机和从机间的一次全量的数据复制,这对实际的系统运营造成了不小的麻烦。
- Redis较难支持在线扩容,在集群容量达到上限时在线扩容会变得很复杂。为避免这一问题,运维人员在系统上线时必须确保有足够的空间,这对资源造成了很大的浪费。
其实redis的主从模式很简单,在实际的生产环境中是很少使用的,我也不建议在实际的生产环境中使用主从模式来提供系统的高可用性,之所以不建议使用都是由它的缺点造成的,在数据量非常大的情况,或者对系统的高可用性要求很高的情况下,主从模式也是不稳定的。
-
哨兵模式
该模式是从Redis的2.6版本开始提供的,但是当时这个版本的模式是不稳定的,直到Redis的2.8版本以后,这个哨兵模式才稳定下来,无论是主从模式,还是哨兵模式,这两个模式都有一个问题,不能水平扩容,并且这两个模式的高可用特性都会受到Master主节点内存的限制。
Sentinel(哨兵)进程是用于监控redis集群中Master主服务器工作的状态,在Master主服务器发生故障的时候,可以实现Master和Slave服务器的切换,保证系统的高可用。
Sentinel(哨兵)进程的作用
- 监控(Monitoring): 哨兵(sentinel) 会不断地检查你的Master和Slave是否运作正常。
- 提醒(Notification):当被监控的某个Redis节点出现问题时, 哨兵(sentinel) 可以通过 API 向管理员或者其他应用程序发送通知。
- 自动故障迁移(Automatic failover):当一个Master不能正常工作时,哨兵(sentinel) 会开始一次自动故障迁移操作,它会将失效Master的其中一个Slave升级为新的Master, 并让失效Master的其他Slave改为复制新的Master;当客户端试图连接失效的Master时,集群也会向客户端返回新Master的地址,使得集群可以使用现在的Master替换失效Master。Master和Slave服务器切换后,Master的redis.conf、Slave的redis.conf和sentinel.conf的配置文件的内容都会发生相应的改变,即,Master主服务器的redis.conf配置文件中会多一行slaveof的配置,sentinel.conf的监控目标会随之调换。
Sentinel(哨兵)进程的工作方式
- 每个Sentinel(哨兵)进程以每秒钟一次的频率向整个集群中的Master主服务器,Slave从服务器以及其他Sentinel(哨兵)进程发送一个 PING 命令。
- 如果一个实例(instance)距离最后一次有效回复 PING 命令的时间超过 down-after-milliseconds 选项所指定的值, 则这个实例会被 Sentinel(哨兵)进程标记为主观下线(SDOWN)
- 如果一个Master主服务器被标记为主观下线(SDOWN),则正在监视这个Master主服务器的所有 Sentinel(哨兵)进程要以每秒一次的频率确认Master主服务器的确进入了主观下线状态
- 当有足够数量的 Sentinel(哨兵)进程(大于等于配置文件指定的值)在指定的时间范围内确认Master主服务器进入了主观下线状态(SDOWN), 则Master主服务器会被标记为客观下线(ODOWN)
- 在一般情况下, 每个 Sentinel(哨兵)进程会以每 10 秒一次的频率向集群中的所有Master主服务器、Slave从服务器发送 INFO 命令。
- 当Master主服务器被 Sentinel(哨兵)进程标记为客观下线(ODOWN)时,Sentinel(哨兵)进程向下线的 Master主服务器的所有 Slave从服务器发送 INFO 命令的频率会从 10 秒一次改为每秒一次。
- 若没有足够数量的 Sentinel(哨兵)进程同意 Master主服务器下线, Master主服务器的客观下线状态就会被移除。若 Master主服务器重新向 Sentinel(哨兵)进程发送 PING 命令返回有效回复,Master主服务器的主观下线状态就会被移除。
哨兵模式的优缺点
优点:
- 哨兵集群模式是基于主从模式的,所有主从的优点,哨兵模式同样具有。
- 主从可以切换,故障可以转移,系统可用性更好。
- 哨兵模式是主从模式的升级,系统更健壮,可用性更高。
缺点:
- Redis较难支持在线扩容,在集群容量达到上限时在线扩容会变得很复杂。为避免这一问题,运维人员在系统上线时必须确保有足够的空间,这对资源造成了很大的浪费。
- 配置复杂
-
Redis官方 Cluster集群模式
Redis Cluster是一种服务器Sharding技术,3.0版本开始正式提供。
在这个图中,每一个蓝色的圈都代表着一个redis的服务器节点。它们任何两个节点之间都是相互连通的。客户端可以与任何一个节点相连接,然后就可以访问集群中的任何一个节点。对其进行存取和其他操作。
Redis集群数据分片
在redis的每一个节点上,都有这么两个东西,一个是插槽(slot)可以理解为是一个可以存储两个数值的一个变量这个变量的取值范围是:0-16383。还有一个就是cluster我个人把这个cluster理解为是一个集群管理的插件。当我们的存取的key到达的时候,redis会根据crc16的算法得出一个结果,然后把结果对 16384 求余数,这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作。
还有就是因为如果集群的话,是有好多个redis一起工作的,那么,就需要这个集群不是那么容易挂掉,所以呢,理论上就应该给集群中的每个节点至少一个备用的redis服务。这个备用的redis称为从节点(slave)。那么这个集群是如何判断是否有某个节点挂掉了呢?
首先要说的是,每一个节点都存有这个集群所有主节点以及从节点的信息。
它们之间通过互相的ping-pong判断是否节点可以连接上。如果有一半以上的节点去ping一个节点的时候没有回应,集群就认为这个节点宕机了,然后去连接它的备用节点。如果某个节点和所有从节点全部挂掉,我们集群就进入fail状态。还有就是如果有一半以上的主节点宕机,那么我们集群同样进入fail状态。这就是我们的redis的投票机制,具体原理如下图所示:
Redis 3.0的集群方案有以下两个问题。
- 一个Redis实例具备了“数据存储”和“路由重定向”,完全去中心化的设计。这带来的好处是部署非常简单,直接部署Redis就行,不像Codis有那么多的组件和依赖。但带来的问题是很难对业务进行无痛的升级,如果哪天Redis集群出了什么严重的Bug,就只能回滚整个Redis集群。
- 对协议进行了较大的修改,对应的Redis客户端也需要升级。升级Redis客户端后谁能确保没有Bug?而且对于线上已经大规模运行的业务,升级代码中的Redis客户端也是一个很麻烦的事情。
Redis Cluster是Redis 3.0以后才正式推出,时间较晚,目前能证明在大规模生产环境下成功的案例还不是很多,需要时间检验。
-
Jedis sharding集群
Redis Sharding可以说是在Redis cluster出来之前业界普遍的采用方式,其主要思想是采用hash算法将存储数据的key进行hash散列,这样特定的key会被定为到特定的节点上。
庆幸的是,Java Redis客户端驱动Jedis已支持Redis Sharding功能,即ShardedJedis以及结合缓存池的ShardedJedisPool
Jedis的Redis Sharding实现具有如下特点:
- 采用一致性哈希算法,将key和节点name同时hashing,然后进行映射匹配,采用的算法是MURMUR_HASH。采用一致性哈希而不是采用简单类似哈希求模映射的主要原因是当增加或减少节点时,不会产生由于重新匹配造成的rehashing。一致性哈希只影响相邻节点key分配,影响量小。
- 为了避免一致性哈希只影响相邻节点造成节点分配压力,ShardedJedis会对每个Redis节点根据名字(没有,Jedis会赋予缺省名字)会虚拟化出160个虚拟节点进行散列。根据权重weight,也可虚拟化出160倍数的虚拟节点。用虚拟节点做映射匹配,可以在增加或减少Redis节点时,key在各Redis节点移动再分配更均匀,而不是只有相邻节点受影响。
- ShardedJedis支持keyTagPattern模式,即抽取key的一部分keyTag做sharding,这样通过合理命名key,可以将一组相关联的key放入同一个Redis节点,这在避免跨节点访问相关数据时很重要。
当然,Redis Sharding这种轻量灵活方式必然在集群其它能力方面做出妥协。比如扩容,当想要增加Redis节点时,尽管采用一致性哈希,毕竟还是会有key匹配不到而丢失,这时需要键值迁移。
作为轻量级客户端sharding,处理Redis键值迁移是不现实的,这就要求应用层面允许Redis中数据丢失或从后端数据库重新加载数据。但有些时候,击穿缓存层,直接访问数据库层,会对系统访问造成很大压力。
-
利用中间件代理
中间件的作用是将我们需要存入redis中的数据的key通过一套算法计算得出一个值。然后根据这个值找到对应的redis节点,将这些数据存在这个redis的节点中。
常用的中间件有这几种
- Twemproxy
- Codis
- nginx
-
如何保证redis和DB中的数据一致性?
如何保证缓存与数据库双写时的数据一致性?
一般情况下我们都是这样使用缓存的:先读缓存,缓存没有的话,就读数据库,然后取出数据后放入缓存,同时返回响应。这种方式很明显会存在缓存和数据库的数据不一致的情况。
你只要用缓存,就可能会涉及到缓存与数据库双存储双写,你只要是双写,就一定会有数据一致性的问题,那么你如何解决一致性问题?
一般来说,就是如果你的系统不是严格要求缓存+数据库必须一致性的话,缓存可以稍微的跟数据库偶尔有不一致的情况,最好不要做这个方案,读请求和写请求串行化,串到一个内存队列里去,这样就可以保证一定不会出现不一致的情况
串行化之后,就会导致系统的吞吐量会大幅度的降低,用比正常情况下多几倍的机器去支撑线上的一个请求。
数据一致性的原因
写流程:
1)先淘汰cache
2)再写db
读流程:
1)先读cache,如果数据命中hit则返回
2)如果数据未命中miss则读db
3)将db中读取出来的数据入缓存
什么情况下可能出现缓存和数据库中数据不一致呢?
在分布式环境下,数据的读写都是并发的,上游有多个应用,通过一个服务的多个部署(为了保证可用性,一定是部署多份的),对同一个数据进行读写,在数据库层面并发的读写并不能保证完成顺序,也就是说后发出的读请求很可能先完成(读出脏数据):
a)发生了写请求A,A的第一步淘汰了cache(如上图中的1)
b)A的第二步写数据库,发出修改请求(如上图中的2)
c)发生了读请求B,B的第一步读取cache,发现cache中是空的(如上图中的步骤3)
d)B的第二步读取数据库,发出读取请求,此时A的第二步写数据还没完成,读出了一个脏数据放入cache(如上图中的步骤4)
即在数据库层面,后发出的请求4比先发出的请求2先完成了,读出了脏数据,脏数据又入了缓存,缓存与数据库中的数据不一致出现了
问题解决思路
能否做到先发出的请求一定先执行完成呢?常见的思路是“串行化”
上图是一个service服务的上下游及服务内部详细展开,细节如下:
1)service的上游是多个业务应用,上游发起请求对同一个数据并发的进行读写操作,上例中并发进行了一个uid=1的余额修改(写)操作与uid=1的余额查询(读)操作
2)service的下游是数据库DB,假设只读写一个DB
3)中间是服务层service,它又分为了这么几个部分
3.1)最上层是任务队列
3.2)中间是工作线程,每个工作线程完成实际的工作任务,典型的工作任务是通过数据库连接池读写数据库
3.3)最下层是数据库连接池,所有的SQL语句都是通过数据库连接池发往数据库去执行的
-
如何解决缓存穿透和缓存雪崩?
缓存雪崩和缓存穿透问题解决方案
缓存雪崩
什么是缓存雪崩?
缓存同一时间大面积的失效,所以,后面的请求都会落到数据库上,造成数据库短时间内承受大量请求而崩掉。
解决方法:
- 事前:尽量保证整个 redis 集群的高可用性,发现机器宕机尽快补上。选择合适的内存淘汰策略。
- 事中:本地ehcache缓存 + hystrix限流&降级,避免MySQL崩掉
- 事后:利用 redis 持久化机制保存的数据尽快恢复缓存
缓存穿透
什么是缓存穿透?
缓存穿透说简单点就是大量请求的 key 根本不存在于缓存中,导致请求直接到了数据库上,根本没有经过缓存这一层。举个例子:某个黑客故意制造我们缓存中不存在的 key 发起大量请求,导致大量请求落到数据库。下面用图片展示一下(这两张图片不是我画的,为了省事直接在网上找的,这里说明一下):
正常缓存处理流程:
缓存穿透情况处理流程:
一般MySQL 默认的最大连接数在 150 左右,这个可以通过
show variables like '%max_connections%';
命令来查看。最大连接数一个还只是一个指标,cpu,内存,磁盘,网络等物理条件都是其运行指标,这些指标都会限制其并发能力!所以,一般 3000 个并发请求就能打死大部分数据库了。有哪些解决办法?
最基本的就是首先做好参数校验,一些不合法的参数请求直接抛出异常信息返回给客户端。比如查询的数据库 id 不能小于 0、传入的邮箱格式不对的时候直接返回错误消息给客户端等等。
1)缓存无效 key : 如果缓存和数据库都查不到某个 key 的数据就写一个到 redis 中去并设置过期时间,具体命令如下:SET key value EX 10086。这种方式可以解决请求的 key 变化不频繁的情况,如何黑客恶意攻击,每次构建的不同的请求key,会导致 redis 中缓存大量无效的 key 。很明显,这种方案并不能从根本上解决此问题。如果非要用这种方式来解决穿透问题的话,尽量将无效的 key 的过期时间设置短一点比如 1 分钟。
另外,这里多说一嘴,一般情况下我们是这样设计 key 的: 表名:列名:主键名:主键值。
如果用 Java 代码展示的话,差不多是下面这样的:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
public Object getObjectInclNullById(Integer id) { // 从缓存中获取数据 Object cacheValue = cache.get(id); // 缓存为空 if (cacheValue == null) { // 从数据库中获取 Object storageValue = storage.get(key); // 缓存空对象 cache.set(key, storageValue); // 如果存储数据为空,需要设置一个过期时间(300秒) if (storageValue == null) { // 必须设置过期时间,否则有被攻击的风险 cache.expire(key, 60 * 5); } return storageValue; } return cacheValue; }
2)布隆过滤器:布隆过滤器是一个非常神奇的数据结构,通过它我们可以非常方便地判断一个给定数据是否存在与海量数据中。我们需要的就是判断 key 是否合法,有没有感觉布隆过滤器就是我们想要找的那个“人”。具体是这样做的:把所有可能存在的请求的值都存放在布隆过滤器中,当用户请求过来,我会先判断用户发来的请求的值是否存在于布隆过滤器中。不存在的话,直接返回请求参数错误信息给客户端,存在的话才会走下面的流程。总结一下就是下面这张图(这张图片不是我画的,为了省事直接在网上找的):
-
如何用redis实现分布式锁?
什么是 RedLock
Redis 官方站这篇文章提出了一种权威的基于 Redis 实现分布式锁的方式名叫 Redlock,此种方式比原先的单节点的方法更安全。它可以保证以下特性:
- 安全特性:互斥访问,即永远只有一个 client 能拿到锁
- 避免死锁:最终 client 都可能拿到锁,不会出现死锁的情况,即使原本锁住某资源的 client crash 了或者出现了网络分区
- 容错性:只要大部分 Redis 节点存活就可以正常提供服务
怎么在单节点上实现分布式锁
SET resource_name my_random_value NX PX 30000
主要依靠上述命令,该命令仅当 Key 不存在时(NX保证)set 值,并且设置过期时间 3000ms (PX保证),值 my_random_value 必须是所有 client 和所有锁请求发生期间唯一的,释放锁的逻辑是:
1 2 3 4 5
if redis.call("get",KEYS[1]) == ARGV[1] then return redis.call("del",KEYS[1]) else return 0 end
上述实现可以避免释放另一个client创建的锁,如果只有 del 命令的话,那么如果 client1 拿到 lock1 之后因为某些操作阻塞了很长时间,此时 Redis 端 lock1 已经过期了并且已经被重新分配给了 client2,那么 client1 此时再去释放这把锁就会造成 client2 原本获取到的锁被 client1 无故释放了,但现在为每个 client 分配一个 unique 的 string 值可以避免这个问题。至于如何去生成这个 unique string,方法很多随意选择一种就行了。
Redlock 算法
算法很易懂,起 5 个 master 节点,分布在不同的机房尽量保证可用性。为了获得锁,client 会进行如下操作:
- 得到当前的时间,微秒单位
- 尝试顺序地在 5 个实例上申请锁,当然需要使用相同的 key 和 random value,这里一个 client 需要合理设置与 master 节点沟通的 timeout 大小,避免长时间和一个 fail 了的节点浪费时间
- 当 client 在大于等于 3 个 master 上成功申请到锁的时候,且它会计算申请锁消耗了多少时间,这部分消耗的时间采用获得锁的当下时间减去第一步获得的时间戳得到,如果锁的持续时长(lock validity time)比流逝的时间多的话,那么锁就真正获取到了。
- 如果锁申请到了,那么锁真正的 lock validity time 应该是 origin(lock validity time) - 申请锁期间流逝的时间
- 如果 client 申请锁失败了,那么它就会在少部分申请成功锁的 master 节点上执行释放锁的操作,重置状态
失败重试
如果一个 client 申请锁失败了,那么它需要稍等一会在重试避免多个 client 同时申请锁的情况,最好的情况是一个 client 需要几乎同时向 5 个 master 发起锁申请。另外就是如果 client 申请锁失败了它需要尽快在它曾经申请到锁的 master 上执行 unlock 操作,便于其他 client 获得这把锁,避免这些锁过期造成的时间浪费,当然如果这时候网络分区使得 client 无法联系上这些 master,那么这种浪费就是不得不付出的代价了。
放锁
放锁操作很简单,就是依次释放所有节点上的锁就行了
性能、崩溃恢复和 fsync
如果我们的节点没有持久化机制,client 从 5 个 master 中的 3 个处获得了锁,然后其中一个重启了,这时注意 整个环境中又出现了 3 个 master 可供另一个 client 申请同一把锁! 违反了互斥性。如果我们开启了 AOF 持久化那么情况会稍微好转一些,因为 Redis 的过期机制是语义层面实现的,所以在 server 挂了的时候时间依旧在流逝,重启之后锁状态不会受到污染。但是考虑断电之后呢,AOF部分命令没来得及刷回磁盘直接丢失了,除非我们配置刷回策略为 fsnyc = always,但这会损伤性能。解决这个问题的方法是,当一个节点重启之后,我们规定在 max TTL 期间它是不可用的,这样它就不会干扰原本已经申请到的锁,等到它 crash 前的那部分锁都过期了,环境不存在历史锁了,那么再把这个节点加进来正常工作。
-
有海量key和value都比较小的数据,在redis中如何存储才更省内存?
-
短结构
当列表、散列、有序集合的长度较短或者体积较小的时候,redis将会采用一种名为ziplist的紧凑存储方式来存储这些结构。
ziplist是列表、散列、有序集合这三种不同类型的对象的一种非结构化表示,它会以序列化的方式存储数据,这些序列化的数据每次被读取的时候都需要进行解码,每次写入的时候也要进行编码。
在典型双向列表里面,每个值都都会有一个节点表示。每个节点都会带有指向链表前一个节点和后一个节点的指针,以及一个指向节点包含的字符串值的指针。
压缩列表是由节点组成的序列,每个节点包含两个长度和一个字符串。第一个长度记录前一个节点的长度(用于对压缩列表从后向前遍历);第二个长度是记录本当前点的长度;被存储的字符串。
-
分片结构
不管列表、散列、有序集合、集合,当超出限制的条件后,就会转换为更为典型的底层结构类型。因为随着紧凑结构的体积不断变大,操作这些结构的速度将会变得越来越慢。
分片的本质就是基于简单的规则将数据划分为更小的部分,然后根据数据所属的部分来决定将数据发送到哪个位置上。很多数据库使用这种技术来扩展存储空间,并提高自己所能处理的负载量。
-
-
本地缓存
一:JDK 自带的 HashMap 和 ConcurrentHashMap 了。
ConcurrentHashMap 可以看作是线程安全版本的 HashMap ,两者都是存放 key/value 形式的键值对。但是,大部分场景来说不会使用这两者当做缓存,因为只提供了缓存的功能,并没有提供其他诸如过期时间之类的功能。一个稍微完善一点的缓存框架至少要提供:过期时间、淘汰机制、命中率统计这三点。
二: Ehcache 、 Guava Cache 、 Spring Cache 这三者是使用的比较多的本地缓存框架。
Ehcache 的话相比于其他两者更加重量。不过,相比于 Guava Cache 、 Spring Cache 来说, Ehcache 支持可以嵌入到 hibernate 和 mybatis 作为多级缓存,并且可以将缓存的数据持久化到本地磁盘中、同时也提供了集群方案(比较鸡肋,可忽略)。
Guava Cache 和 Spring Cache 两者的话比较像。
Guava 相比于 Spring Cache 的话使用的更多一点,它提供了 API 非常方便我们使用,同时也提供了设置缓存有效时间等功能。它的内部实现也比较干净,很多地方都和 ConcurrentHashMap 的思想有异曲同工之妙。
使用 Spring Cache 的注解实现缓存的话,代码会看着很干净和优雅,但是很容易出现问题比如缓存穿透、内存溢出。
三: 后起之秀 Caffeine。
相比于 Guava 来说 Caffeine 在各个方面比如性能要更加优秀,一般建议使用其来替代 Guava 。并且, Guava 和 Caffeine 的使用方式很像!
本地缓存固然好,但是缺陷也很明显,比如多个相同服务之间的本地缓存的数据无法共享。
本地缓存的局限性:
- 本地缓存对分布式架构支持不友好,比如同一个相同的服务部署在多台机器上的时候,各个服务之间的缓存是无法共享的,因为本地缓存只在当前机器上有。
- 本地缓存容量受服务部署所在的机器限制明显。 如果当前系统服务所耗费的内存多,那么本地缓存可用的容量就很少。
-
Redis 和 Memcached 的区别和共同点
共同点 :
- 都是基于内存的数据库,一般都用来当做缓存使用。
- 都有过期策略。
- 两者的性能都非常高。
区别 :
- Redis 支持更丰富的数据类型(支持更复杂的应用场景)。Redis 不仅仅支持简单的 k/v 类型的数据,同时还提供 list,set,zset,hash 等数据结构的存储。Memcached 只支持最简单的 k/v 数据类型。
- Redis 支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用,而 Memecache 把数据全部存在内存之中。
- Redis 有灾难恢复机制。 因为可以把缓存中的数据持久化到磁盘上。
- Redis 在服务器内存使用完之后,可以将不用的数据放到磁盘上。但是,Memcached 在服务器内存使用完之后,就会直接报异常。
- Memcached 没有原生的集群模式,需要依靠客户端来实现往集群中分片写入数据;但是 Redis 目前是原生支持 cluster 模式的.
- Memcached 是多线程,非阻塞 IO 复用的网络模型;Redis 使用单线程的多路 IO 复用模型。 (Redis 6.0 引入了多线程 IO )
- Redis 支持发布订阅模型、Lua 脚本、事务等功能,而 Memcached 不支持。并且,Redis 支持更多的编程语言。
- Memcached过期数据的删除策略只用了惰性删除,而 Redis 同时使用了惰性删除与定期删除。